I dagens värld är Lista över olympiska spelens medaljfördelning ett ämne som har fångat uppmärksamhet och intresse hos ett brett spektrum av samhället. Oavsett om det beror på dess relevans inom det kulturella området, dess inverkan på den globala ekonomin eller dess inflytande på människors dagliga liv, har Lista över olympiska spelens medaljfördelning blivit en grundläggande aspekt att ta hänsyn till inom olika områden. Eftersom Lista över olympiska spelens medaljfördelning fortsätter att få framträdande plats på världsscenen är det avgörande att analysera dess inverkan och förstå dess betydelse i det aktuella sammanhanget. I den här artikeln kommer vi att utforska de olika aspekterna av Lista över olympiska spelens medaljfördelning och undersöka hur det formar det nuvarande landskapet i olika aspekter av samhället.
Den här artikeln eller det här avsnittet innehåller inaktuella uppgifter och behöver uppdateras. (2022-02)
Hjälp gärna Wikipedia att åtgärda problemet genom att redigera artikeln eller diskutera saken på diskussionssidan. |
Den här listan över olympiska spelens medaljfördelning visar varje lands medaljfördelning i alla olympiska sommarspel och vinterspel från 1896 till 2012. Olympiska sommarspelen 1906 ingår inte, eftersom de inte längre erkänns av den internationella olympiska kommittén som officiella spel. IOK själv publicerar inga sådana här tabeller, utan publicerar inofficiella tabeller för varje spel. Den här har således sammansatts genom att lägga ihop siffror från IOK:s databas.
Resultaten är listade efter IOK:s landskoder, såsom de visas av IOK:s databas. EN kod motsvarar vanligtvis en nationell olympisk kommitté. När olika koder visas för olika år har medaljerna kombinerats, om det beror på ett byte av IOK-kod (såsom från HOL till NED för Nederländerna) eller namnbyte (såsom från Ceylon till Sri Lanka.) Om en idrottare har vunnit medaljen till exempel innan ett lands självständighet, tillräknas i den här totalen medaljen den nationella olympiska kommitté som idrottaren tillhörde, och inte nödvändigtvis det land idrottaren bor i idag. Kursiverade namn är länder som inte längre existerar.
Sorteringen i tabellen är förinställd på alfabetisk ordning, efter namnet på varje olympiska kommitté, men kan ändras till att sorteras via vilken annan kolumn som helst, såsom totalt antal guldmedaljer, eller totalt antal medaljer över huvud taget. För att sortera efter guld, silver och sen brons kan man först sortera bronskolumnen, sen silverkolumnen och slutligen guldkolumnen. Tabellen innehåller inte medaljer som har tagits tillbaka, såsom på grund av dopning. Tabellen innehåller för närvarande alla spel fram till olympiska sommarspelen 2012 i London.
Land (IOK-kod) | Antal Sommar | ![]() |
![]() |
![]() |
Total | Antal Vinter | ![]() |
![]() |
![]() |
Total | Antal Spel | ![]() |
![]() |
![]() |
Kombinerad total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
![]() |
13 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 13 | 0 | 0 | 2 | 2 |
![]() |
12 | 5 | 2 | 8 | 15 | 3 | 0 | 0 | 0 | 0 | 15 | 5 | 2 | 8 | 15 |
![]() |
23 | 18 | 24 | 28 | 70 | 17 | 0 | 0 | 0 | 0 | 40 | 18 | 24 | 28 | 70 |
![]() |
5 | 1 | 2 | 9 | 12 | 5 | 0 | 0 | 0 | 0 | 10 | 1 | 2 | 9 | 12 |
![]() |
2 | 3 | 4 | 5 | 12 | 0 | 0 | 0 | 0 | 0 | 2 | 3 | 4 | 5 | 12 |
![]() |
25 | 138 | 153 | 176 | 467 | 17 | 5 | 1 | 3 | 9 | 42 | 143 | 154 | 179 | 476 |
![]() |
26 | 18 | 33 | 35 | 86 | 21 | 55 | 70 | 76 | 201 | 47 | 73 | 103 | 111 | 287 |
![]() |
5 | 6 | 5 | 15 | 26 | 4 | 0 | 0 | 0 | 0 | 9 | 6 | 5 | 15 | 26 |
![]() |
15 | 5 | 2 | 5 | 12 | 0 | 0 | 0 | 0 | 0 | 15 | 5 | 2 | 5 | 12 |
![]() |
8 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 | 1 | 1 |
![]() |
11 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 11 | 0 | 0 | 1 | 1 |
![]() |
5 | 12 | 25 | 41 | 78 | 5 | 1 | 4 | 4 | 9 | 10 | 13 | 29 | 45 | 87 |
![]() |
25 | 37 | 52 | 53 | 142 | 19 | 1 | 1 | 3 | 5 | 44 | 38 | 53 | 56 | 147 |
![]() |
17 | 0 | 0 | 1 | 1 | 6 | 0 | 0 | 0 | 0 | 23 | 0 | 0 | 1 | 1 |
![]() |
3 | 0 | 1 | 3 | 4 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 1 | 3 | 4 |
![]() |
9 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 9 | 0 | 1 | 0 | 1 |
![]() |
21 | 23 | 30 | 55 | 108 | 6 | 0 | 0 | 0 | 0 | 27 | 23 | 30 | 55 | 108 |
![]() |
1 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 2 |
![]() |
19 | 51 | 85 | 78 | 214 | 18 | 1 | 2 | 3 | 6 | 37 | 52 | 87 | 81 | 220 |
![]() |
5 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 5 | 1 | 0 | 0 | 1 |
![]() |
13 | 3 | 1 | 1 | 5 | 1 | 0 | 0 | 0 | 0 | 14 | 3 | 1 | 1 | 5 |
![]() |
25 | 59 | 99 | 120 | 278 | 21 | 52 | 45 | 48 | 145 | 46 | 111 | 144 | 168 | 423 |
![]() |
22 | 2 | 7 | 4 | 13 | 15 | 0 | 0 | 0 | 0 | 37 | 2 | 7 | 4 | 13 |
![]() |
9 | 201 | 144 | 128 | 473 | 9 | 9 | 18 | 17 | 44 | 18 | 210 | 162 | 145 | 517 |
![]() |
16 | 2 | 7 | 12 | 21 | 10 | 0 | 0 | 0 | 0 | 26 | 2 | 7 | 12 | 21 |
![]() |
18 | 2 | 6 | 11 | 19 | 1 | 0 | 0 | 0 | 0 | 19 | 2 | 6 | 11 | 19 |
![]() |
14 | 1 | 1 | 2 | 4 | 6 | 0 | 0 | 0 | 0 | 20 | 1 | 1 | 2 | 4 |
![]() |
12 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 12 | 0 | 1 | 0 | 1 |
![]() |
6 | 6 | 7 | 10 | 23 | 6 | 4 | 5 | 1 | 10 | 12 | 10 | 12 | 11 | 33 |
![]() |
19 | 72 | 67 | 69 | 208 | 0 | 0 | 0 | 0 | 0 | 19 | 72 | 67 | 69 | 208 |
![]() |
9 | 0 | 1 | 0 | 1 | 9 | 0 | 0 | 0 | 0 | 18 | 0 | 1 | 0 | 1 |
![]() |
5 | 14 | 15 | 14 | 43 | 5 | 5 | 5 | 6 | 16 | 10 | 19 | 20 | 20 | 59 |
![]() |
16 | 49 | 49 | 45 | 143 | 16 | 2 | 8 | 15 | 25 | 32 | 51 | 57 | 60 | 168 |
![]() |
26 | 43 | 67 | 69 | 179 | 12 | 0 | 1 | 0 | 1 | 38 | 43 | 68 | 69 | 180 |
![]() |
8 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 | 1 | 1 |
![]() |
13 | 3 | 2 | 1 | 6 | 0 | 0 | 0 | 0 | 0 | 13 | 3 | 2 | 1 | 6 |
![]() |
13 | 1 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 13 | 1 | 1 | 0 | 2 |
![]() |
21 | 7 | 9 | 10 | 26 | 1 | 0 | 0 | 0 | 0 | 22 | 7 | 9 | 10 | 26 |
![]() |
4 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 1 | 1 |
![]() |
11 | 9 | 9 | 15 | 33 | 8 | 4 | 2 | 1 | 7 | 19 | 13 | 11 | 16 | 40 |
![]() |
12 | 21 | 7 | 17 | 45 | 2 | 0 | 0 | 0 | 0 | 14 | 21 | 7 | 17 | 45 |
![]() |
24 | 101 | 84 | 117 | 302 | 21 | 41 | 59 | 56 | 156 | 45 | 142 | 143 | 173 | 458 |
![]() |
27 | 202 | 223 | 246 | 671 | 21 | 27 | 27 | 40 | 94 | 48 | 229 | 250 | 286 | 765 |
![]() |
9 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 9 | 0 | 1 | 0 | 1 |
![]() |
5 | 6 | 5 | 14 | 25 | 5 | 0 | 0 | 0 | 0 | 10 | 6 | 5 | 14 | 25 |
![]() |
24 | 258 | 303 | 334 | 895 | 19 | 89 | 93 | 66 | 248 | 42 | 347 | 396 | 400 | 1143 |
![]() |
5 | 153 | 129 | 127 | 409 | 6 | 39 | 36 | 35 | 110 | 11 | 192 | 165 | 162 | 519 |
![]() |
13 | 0 | 1 | 3 | 4 | 1 | 0 | 0 | 0 | 0 | 14 | 0 | 1 | 3 | 4 |
![]() |
27 | 236 | 272 | 272 | 780 | 21 | 9 | 3 | 10 | 22 | 48 | 245 | 275 | 282 | 802 |
![]() |
27 | 30 | 42 | 38 | 110 | 17 | 0 | 0 | 0 | 0 | 44 | 30 | 42 | 38 | 110 |
![]() |
8 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 8 | 1 | 0 | 0 | 1 |
![]() |
13 | 0 | 1 | 0 | 1 | 7 | 0 | 0 | 0 | 0 | 20 | 0 | 1 | 0 | 1 |
![]() |
16 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 16 | 0 | 0 | 1 | 1 |
![]() |
14 | 0 | 1 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 14 | 0 | 1 | 1 | 2 |
![]() |
15 | 1 | 1 | 1 | 3 | 3 | 0 | 0 | 0 | 0 | 18 | 1 | 1 | 1 | 3 |
![]() |
25 | 167 | 145 | 164 | 476 | 21 | 0 | 2 | 4 | 6 | 46 | 167 | 147 | 168 | 482 |
![]() |
19 | 0 | 2 | 2 | 4 | 16 | 0 | 0 | 0 | 0 | 35 | 0 | 2 | 2 | 4 |
![]() |
23 | 9 | 6 | 11 | 26 | 8 | 0 | 0 | 0 | 0 | 31 | 9 | 6 | 11 | 26 |
![]() |
14 | 6 | 10 | 11 | 27 | 0 | 0 | 0 | 0 | 0 | 14 | 6 | 10 | 11 | 27 |
![]() |
16 | 15 | 20 | 25 | 60 | 9 | 0 | 0 | 0 | 0 | 25 | 15 | 20 | 25 | 60 |
![]() |
13 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 13 | 0 | 0 | 1 | 1 |
![]() |
20 | 9 | 8 | 11 | 28 | 5 | 0 | 0 | 0 | 0 | 25 | 9 | 8 | 11 | 28 |
![]() |
15 | 1 | 1 | 5 | 7 | 5 | 0 | 0 | 0 | 0 | 20 | 1 | 1 | 5 | 7 |
![]() |
26 | 199 | 166 | 185 | 550 | 21 | 37 | 32 | 37 | 106 | 47 | 236 | 198 | 222 | 656 |
![]() |
16 | 17 | 29 | 21 | 67 | 6 | 0 | 0 | 0 | 0 | 22 | 17 | 29 | 21 | 67 |
![]() |
21 | 130 | 126 | 142 | 398 | 19 | 9 | 13 | 15 | 37 | 40 | 139 | 139 | 157 | 435 |
![]() |
5 | 16 | 17 | 19 | 52 | 5 | 1 | 3 | 2 | 6 | 10 | 17 | 20 | 21 | 58 |
![]() |
13 | 25 | 32 | 29 | 86 | 3 | 0 | 0 | 0 | 0 | 16 | 25 | 32 | 29 | 86 |
![]() |
9 | 14 | 12 | 21 | 47 | 8 | 0 | 1 | 1 | 2 | 17 | 14 | 13 | 22 | 49 |
![]() |
16 | 81 | 82 | 80 | 243 | 16 | 23 | 14 | 8 | 45 | 32 | 104 | 96 | 88 | 288 |
![]() |
12 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 | 2 | 2 |
![]() |
5 | 0 | 1 | 2 | 3 | 5 | 0 | 0 | 0 | 0 | 10 | 0 | 1 | 2 | 3 |
![]() |
10 | 3 | 11 | 5 | 19 | 9 | 0 | 2 | 1 | 3 | 19 | 3 | 13 | 6 | 22 |
![]() |
16 | 0 | 2 | 2 | 4 | 15 | 0 | 0 | 0 | 0 | 31 | 0 | 2 | 2 | 4 |
![]() |
16 | 0 | 0 | 0 | 0 | 17 | 2 | 2 | 5 | 9 | 33 | 2 | 2 | 5 | 9 |
![]() |
8 | 6 | 5 | 10 | 21 | 7 | 0 | 0 | 0 | 0 | 15 | 6 | 5 | 10 | 21 |
![]() |
22 | 1 | 1 | 0 | 2 | 7 | 0 | 2 | 0 | 2 | 29 | 1 | 3 | 0 | 4 |
![]() |
5 | 0 | 0 | 1 | 1 | 4 | 0 | 0 | 0 | 0 | 9 | 0 | 0 | 1 | 1 |
![]() |
14 | 0 | 3 | 3 | 6 | 0 | 0 | 0 | 0 | 0 | 14 | 0 | 3 | 3 | 6 |
![]() |
8 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 | 1 | 1 |
![]() |
22 | 13 | 21 | 28 | 62 | 7 | 0 | 0 | 0 | 0 | 29 | 13 | 21 | 28 | 62 |
![]() |
5 | 0 | 2 | 5 | 7 | 5 | 0 | 0 | 0 | 0 | 10 | 0 | 2 | 5 | 7 |
![]() |
12 | 2 | 9 | 13 | 24 | 12 | 0 | 0 | 0 | 0 | 24 | 2 | 9 | 13 | 24 |
![]() |
2 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 3 | 0 | 1 | 0 | 1 |
![]() |
13 | 6 | 5 | 11 | 22 | 5 | 0 | 0 | 0 | 0 | 18 | 6 | 5 | 11 | 22 |
![]() |
9 | 1 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 9 | 1 | 0 | 1 | 2 |
![]() |
6 | 0 | 4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 4 | 0 | 4 |
![]() |
24 | 77 | 85 | 104 | 266 | 19 | 29 | 31 | 26 | 86 | 43 | 106 | 116 | 130 | 352 |
![]() |
13 | 0 | 1 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 15 | 0 | 1 | 0 | 1 |
![]() |
22 | 42 | 18 | 39 | 99 | 14 | 0 | 1 | 0 | 1 | 36 | 42 | 19 | 39 | 100 |
![]() |
11 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 11 | 0 | 0 | 1 | 1 |
![]() |
15 | 3 | 8 | 12 | 23 | 0 | 0 | 0 | 0 | 0 | 15 | 3 | 8 | 12 | 23 |
![]() |
24 | 56 | 49 | 43 | 148 | 21 | 107 | 106 | 90 | 303 | 45 | 163 | 155 | 133 | 451 |
![]() |
16 | 3 | 3 | 4 | 10 | 1 | 0 | 0 | 0 | 0 | 17 | 3 | 3 | 4 | 10 |
![]() |
16 | 1 | 0 | 2 | 3 | 0 | 0 | 0 | 0 | 0 | 16 | 1 | 0 | 2 | 3 |
![]() |
11 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 11 | 0 | 1 | 0 | 1 |
![]() |
17 | 1 | 3 | 0 | 4 | 1 | 0 | 0 | 0 | 0 | 18 | 1 | 3 | 0 | 4 |
![]() |
20 | 0 | 2 | 7 | 9 | 3 | 0 | 0 | 0 | 0 | 23 | 0 | 2 | 7 | 9 |
![]() |
20 | 64 | 82 | 125 | 271 | 21 | 2 | 6 | 6 | 14 | 41 | 66 | 88 | 131 | 285 |
![]() |
23 | 4 | 8 | 11 | 23 | 6 | 0 | 0 | 0 | 0 | 29 | 4 | 8 | 11 | 23 |
![]() |
17 | 0 | 2 | 6 | 8 | 6 | 0 | 0 | 0 | 0 | 23 | 0 | 2 | 6 | 8 |
![]() |
8 | 0 | 0 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 | 4 | 4 |
![]() |
20 | 88 | 94 | 119 | 301 | 19 | 0 | 0 | 1 | 1 | 39 | 88 | 94 | 120 | 302 |
![]() |
5 | 132 | 122 | 145 | 399 | 5 | 36 | 29 | 26 | 91 | 10 | 168 | 151 | 171 | 490 |
![]() |
3 | 1 | 4 | 3 | 8 | 0 | 0 | 0 | 0 | 0 | 3 | 1 | 4 | 3 | 8 |
![]() |
10 | 0 | 1 | 2 | 3 | 0 | 0 | 0 | 0 | 0 | 10 | 0 | 1 | 2 | 3 |
![]() |
13 | 0 | 1 | 0 | 1 | 5 | 0 | 0 | 0 | 0 | 18 | 0 | 1 | 0 | 1 |
![]() |
3 | 1 | 2 | 4 | 7 | 1 | 0 | 0 | 0 | 0 | 4 | 1 | 2 | 4 | 7 |
![]() |
3 | 2 | 4 | 3 | 9 | 3 | 0 | 0 | 0 | 0 | 6 | 2 | 4 | 3 | 9 |
![]() |
15 | 0 | 2 | 2 | 4 | 0 | 0 | 0 | 0 | 0 | 15 | 0 | 2 | 2 | 4 |
![]() |
5 | 7 | 9 | 8 | 24 | 5 | 1 | 2 | 1 | 4 | 10 | 8 | 11 | 9 | 28 |
![]() |
6 | 4 | 6 | 9 | 19 | 6 | 0 | 2 | 5 | 7 | 12 | 4 | 8 | 14 | 26 |
![]() |
18 | 23 | 26 | 27 | 76 | 6 | 0 | 0 | 0 | 0 | 24 | 23 | 26 | 27 | 76 |
![]() |
9 | 395 | 319 | 296 | 1010 | 9 | 78 | 57 | 59 | 194 | 18 | 473 | 376 | 355 | 1204 |
![]() |
1 | 45 | 38 | 29 | 112 | 1 | 9 | 6 | 8 | 23 | 2 | 54 | 44 | 37 | 135 |
![]() |
21 | 37 | 59 | 34 | 130 | 18 | 1 | 0 | 1 | 2 | 39 | 38 | 59 | 35 | 132 |
![]() |
16 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 16 | 0 | 2 | 0 | 2 |
![]() |
11 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 11 | 0 | 1 | 0 | 1 |
![]() |
12 | 1 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 12 | 1 | 0 | 1 | 2 |
![]() |
26 | 143 | 164 | 176 | 483 | 21 | 48 | 33 | 48 | 129 | 47 | 191 | 197 | 224 | 612 |
![]() |
27 | 47 | 72 | 66 | 185 | 21 | 44 | 37 | 46 | 127 | 48 | 91 | 109 | 112 | 312 |
![]() |
12 | 1 | 1 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 12 | 1 | 1 | 1 | 3 |
![]() |
5 | 0 | 1 | 2 | 3 | 3 | 0 | 0 | 0 | 0 | 8 | 0 | 1 | 2 | 3 |
![]() |
12 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 12 | 0 | 2 | 0 | 2 |
![]() |
15 | 7 | 6 | 11 | 24 | 2 | 0 | 0 | 0 | 0 | 17 | 7 | 6 | 11 | 24 |
![]() |
11 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 11 | 0 | 0 | 1 | 1 |
![]() |
8 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 1 | 0 | 1 |
![]() |
16 | 2 | 5 | 11 | 18 | 3 | 0 | 0 | 0 | 0 | 19 | 2 | 5 | 11 | 18 |
![]() |
13 | 3 | 3 | 4 | 10 | 0 | 0 | 0 | 0 | 0 | 13 | 3 | 3 | 4 | 10 |
![]() |
21 | 39 | 25 | 23 | 87 | 15 | 0 | 0 | 0 | 0 | 36 | 39 | 25 | 23 | 87 |
![]() |
14 | 2 | 3 | 2 | 7 | 0 | 0 | 0 | 0 | 0 | 14 | 2 | 3 | 2 | 7 |
![]() |
5 | 34 | 27 | 55 | 116 | 5 | 1 | 1 | 3 | 5 | 10 | 35 | 28 | 58 | 121 |
![]() |
8 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 8 | 1 | 0 | 0 | 1 |
![]() |
26 | 974 | 757 | 668 | 2399 | 21 | 87 | 95 | 71 | 253 | 47 | 1061 | 852 | 739 | 2652 |
![]() |
20 | 2 | 2 | 6 | 10 | 1 | 0 | 0 | 0 | 0 | 21 | 2 | 2 | 6 | 10 |
![]() |
5 | 5 | 5 | 11 | 21 | 5 | 1 | 0 | 0 | 1 | 10 | 6 | 5 | 11 | 22 |
![]() |
17 | 2 | 2 | 8 | 12 | 3 | 0 | 0 | 0 | 0 | 20 | 2 | 2 | 8 | 12 |
![]() |
14 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 14 | 0 | 2 | 0 | 2 |
![]() |
11 | 0 | 1 | 0 | 1 | 7 | 0 | 0 | 0 | 0 | 18 | 0 | 1 | 0 | 1 |
![]() |
16 | 26 | 28 | 26 | 80 | 14 | 0 | 3 | 1 | 4 | 30 | 26 | 31 | 27 | 84 |
![]() |
1 | 0 | 1 | 2 | 3 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 2 | 3 |
![]() |
11 | 0 | 1 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 11 | 0 | 1 | 1 | 2 |
![]() |
9 | 3 | 4 | 1 | 8 | 0 | 0 | 0 | 0 | 0 | 9 | 3 | 4 | 1 | 8 |
![]() |
3 | 8 | 5 | 4 | 17 | 0 | 0 | 0 | 0 | 0 | 3 | 8 | 5 | 4 | 17 |
Totals | 27 | 4807 | 4777 | 5130 | 14714 | 21 | 860 | 860 | 849 | 2569 | 48 | 5667 | 5637 | 5979 | 17283 |
Efter olympiska sommarspelen 2012 i London hade 73 av för närvarande 205 nationella olympiska kommittéer ännu inte tagit någon medalj.